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Abstract—The paper derives equations for the calculation of unsteady heat flow to wall in cases
where the time variation of temperature on the surface of the wall can be expressed by a power or
trigonometric series. To make use of these equations, it is first necessary to establish reliably the square
root of the product of heat conductivity, density and specific heat of the wall material, denoted by 8,
and to measure the time variation of the surface temperature rise with sufficient accuracy. Both tasks
can be accomplished through the use of thin-film resistance thermometers consisting of a thin
metallic layer deposited on an electrically insulating wall. The paper presents a detailed elaboration
of the unsteady method of 8 measurement which facilitates determining this value with an ercor of about
3%. A method of measuring the surface temperature rise exceeding 3 degC with an error of about
2% is also described. The procedure discussed in the paper permits the determination of unsteady heat
flow to wall to be made with an error of approximately 4%,.

NOMENCLATURE
coefficients;
specific heat;
condenser capacity;
wall thickness;
expression defined by equation (40);
electric voltage;
potential difference;
majorant function;
area;
electric current;
integral;
expression defined by equation (31);
expression defined by equation (32);
scale;
number;
heat flow;
heat output;
a term of series R(jv1);
series defined by equation (23);
electric resistance;
resistance defined by equation (51);
resistance defined by equation (68);
a term of series S(jve);
series defined by equation (24);
time;
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T, temperature rise;

U, circumference;

x, y, co-ordinates;

Z, expression defined by equation (82).

Greek symbols

a, temperature coefficient of resistance;

B, = v/(Apc);

v, temperature coefficient of thermal
conductivity;

3, relative deviation;

€, relative setting of potentiometer;

{o, expression defined by equation (45);

Z, expression defined by equation (46);

1, expression defined by equation (72);

Lo, expression defined by equation (73);

7, shift of origin in direction of y-axis;

9, a variable;

, limit absolute error;

*, limit relative error;

A, thermal conductivity;

A, heat-transfer coefficient defined by
equation (93);

i, coefficient of transverse heat flow

effect;
frequency;
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£, a variable;
P, density;
a, correction factor according to equa-
tion (69);
7, period;

b, expression defined by equation (56);
&, coefficient defined by equation (96);
2, expression defined by equation (37).

The SI system of units [kg of mass, s, m, °C,
Al is used for all quantities.

INTRODUCTION

AS EVIDENCED by a large number of treatises
published on the subject in recent years, the
determination of the heat fiow to wall has been
brought into the foreground of interest in re-
search studies concerned with unsteady heat
transfer. This is quite understandable because
the heat flow usually expresses directly the losses
of thermal energy and specifies, in conjunction
with the surface temperature and the temperature
of the medium, the local values of the heat-
transfer coefficient.

Considerable attention has recently been
accorded to the elaboration of the methods of
measurernent  of rapidly variable surface
temperatures with thin-film resistance ther-
mometers (see, for example, [1--4]) gauges that
consist of a thin metallic film deposited on an
glectrically insulating wall. Such thermometers
record, almost without distortion [5] very fast
(up to 1 degC/us) variations of temperature of
the surface on which they are produced. As
pointed out by several investigators (see {1, 5-7])
this property can be utilized to advantage in the
determination of unsteady heat flow to wall,
particularly in connection with the shock tube
technique.

The object of the presentation that follows is
to refine further the methods suggested by those
authors and to promote their application.

DEPENDENCE OF HEAT FLOW TO WALL OF A
HALF-SPACE ON TIME VARIATION OF SURFACE
TEMPERATURE

The conditions of experiments in which
unsteady heat flows are studied, quite frequently
approach those of heat conduction through a
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half-space whose thermophysical properties are
independent of temperature and the time vari-
ation of the surface temperature rise is known,

The temperature rise of the half-space is
described by the relation [8]:
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x ¢ T(e;t—49)
1650 =5 () | T e
RN

X2
exp (— T %E) dé (1)

where ¢ denotes the time from the instant of
T(x;(s = &, xistheco-ordinatein the direction
of the normal to the surface, the variation of
whose temperature rise 7(-s-; ¢} is known, and A,
p and c are respectively the thermal conductivity,
density and specific heat, of the half-space. The
heat flow through the surface of the half-space is
given by equation

g = — alim T30

T oX

)

Equations (1) and (2) are solved on digital
computers, graphically [2] or by means of
analogue networks [9]. But very frequently the
temperature variation T(-e-; t) can be approxi-
mated by a power or trigonometric series; in
such cases, one may apply the analytic solution
outlined in the sections that follow.

When the temperature variation 7(-s-; ) is
expressed by a power series,

T(s;0 =X At0 (=%, 1,2..) @
j=
it follows that
T(o:t—9 =S ded* (k=-o,1,2,..) (4
PN

where

di = 5 (~D¥G) api~*. ®)
P ke
Introducing relation (4) in equation (1) and
substituting
x2 pc

=49 X ©)

we obtain
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T(x; t)—~ fok (xz pc) JE k-4

(x¥pe/dt))

exp(—§dé&. (7)
The function in the integrand can be integrated
and the respective indefinite integral obtained by
integration by parts in the form

Jé—’f"i exp(—§&€) dé =exp(—9§) ?
=

1g~k-3+1
D 1)

k—3%
'
( 1 )1.
Since the series on the right-hand side of the
equation is an alternating one and it holds that

(= D)ig-k-i4

lim - ————— = 0,

o (k ; %)l! exp &

the integral in equation (7) is convergent and the
equation takes the form of

Tx; ) = — zszexp( 4 A)
( -DHODV (el T 4

(7

As the partial derivative of expression (8) with
respect to x and its limit for x approaching zero
indicate, it holds that

i T )
m .
T B 3x

®

n
Ax

J(g) Z w1

fom= B

®

Finally it follows from equations (2), (5) and (9)
that

Ae\ (O (=DF =
- _ Ape 3
JEN 2 221 2, 400}
k=6 =
10)
Ifn = -, itisatemperature jump that is involved
on the surface of the half-space with value
Ao =T.
For such a case equation (10) yields the well-
known relation

HM, -0
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q= '\/(%) T. (1n

Ifn > -o, functiong(r) is more complicated ; thus,
for example, for n = 4 we get

Apc
e
(Ao + 2dxt + § A2 4+ 12 8 A3r® + 128 4419,
(12)

When function 7--(; £) can be expressed by a
trigonometric series

T(e;t) = Ao + % (A4 cosjvt + Bysin jvt)
j=1

G=1,2..) (3

where

(14)

p o= o
) T

7 being the period of function T(~-; 7}, it holds
that

T(e;t— 9) =40+ Z(A;cowm?

) + Bysinjvd) (15)

} 16)

It follows from equations (1) and (15) that

T(x; 1) = Aoz\/(”i) j §-32
-

2
exp (-— 2—? %C) d?
n ¢

. [ cos jvd

i=1 S
x2 pc
exp (‘ a9 ‘x) dé

SJE 2] 2

exp (— ip 7) d%}.J

where
Aj = Ajcosjvt + Bysin jut
B; = Ajsin jvt — Bjcos jvt

-

L (17)

sin jvd
93z
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Denoting successively by /1, Iz, I3 the terms on
the right-hand side of the equation, we obtain
from relations (2) and (17)

11m 313\
\S—)’@- x

18)

According to the preceding exposition

ol pe
-0 f(5)

lim = =
z—>§ OX

It is furthermore necessary to evaluate the

following integrals

(19)

1
cos jrd x2 pe )
fz,' = J' “*‘531—;2" exp (-—- i:g %) d’t(}
5 (20)
sin v x2 pc
Iz = J '#3{2 exp (-— 49 PX) dg
Py )

The functions in the integrands of equations (20)
can be integrated and have the following
majorant function

x% pc

2 )

Since the integral in equation (7) is convergent,
integrals I»j, I35, are also convergent. We first
evaluate integrals

Iy = JCOSJ}”}d’ﬁ; Iy = jsmzlfﬂdff}.

gare 32

Jf=9"%2exp (

@D

Irrespective of the integration constant, the

method by parts resuits in

~

Iy = / COSJVI9 g‘ (_ l)k(jv'ﬁ)“
# ; ( %) k!

O (— DRy
~ (2" + ’5) (Zk)']

R eI 1

+ 2jV’l9 Sinjl"??‘ L (22)
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w ’ 22)
. . (= D)*(jpd)2k
— 2jvd cos jV‘ﬂT DY AN e
(3 o]
h=5,1,2.]
Furthermore letting
N N
R(jvt) = A
() = > P (23
[y (2k)!
(kG

S(jve) = 2thZ (Zk L %)‘“(’2;)!.-

k=g

we can, in view of the convergence of integrals
Ia3, I3; write their solution obtained by the
method by parts, in the form

2 % pc 1
by = - \/’}e"p( 4 /\)
[R(jvt) cos jvt + S(jve) sin jvt]
x2 pc [ It x2 p
T4 Jﬁz Xp( 49 ,\)dﬂ
> (25
e = 2 e (<20 =
37—_x/1‘ exp( 4t A
[R(jvt) sin jut — S(jvt) cos jvt
x2 pe { It CoxTpey
T4 J g2 P (" 49 )\) di.

4

The question now is the convergence of series
R(jvt) and S(jvr). Denoting by r, s the terms of
the respective series, we get from equations (23)
and (24).

351 D V)

e (Zk -+ ?;)(Zk + -2')

Sk+1 ( jvt)z

se =@k + pEk + 9 (26)

Since the absolute value of the ratio of successive
terms of the two alternating series decreases with
increasing k and for k& increasing beyond all
bounds approaches zero, series R(jvf) and
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S(jvt) converge. Consequently, the integrals in
equations (25) aiso converge. It follows from
relations (17) and (25) that

¥ BE) ]

- pc
I = 2\/( /\t)xP( 4 A
n

A {{R( Jve) cos jut + S(jvi) sin jvi]

x3 pied 121 x2 pc
J (m)f w(~555) 40}
e X [(ee X2 pe
3573 (m\t) exp (“ 4t A)

n

Z B; {[R(jvt) sin jvt — S(jvt) cos jvt]

J=1
$
x3 [p3c (Ian x2 pc
(= 5a/7) [ oeme (=35 5) o0}
B J
Carrying out in equations (27) partial derivatives

with respect to x and limits of these derivatives
for x approaching zero, gives

LY SN DY
[R(jv?) cos jut + S(jvt) sin jvi]
. s (28)
,Erii)ii - \/ (:;t) z B,
[R(jvt) sin jvt —j S(jvt) cos jvt]. |

Introducing finally relations (16), (19), (28)
into equation (18), we obtain the solution in the
form of

A n
g= J(-S) {do + EI[A, R(jvt) + B; S(jvt)]}.
(29

Series R(jvt) and S(jvt) are best evaluated with
the aid of relations (26). The results thus arrived
at are summarized in Table ! and Fig, 1.

The solutions presented in the foregoing
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remain, of course, valid only as long as the wall
can be considered a half-space, i.c. as long as
C

' < BX d? (30)

where d is the thickness of the wall on which the

time variation of surface temperature is to be

studied. Times up to 1 s, quite satisfactory

especially for shock tube experiments, are usually

acceptable for the backing of the thin-film
thermometers.

vt
Fic. 1. Curves of function R(j») and S(jv1).

MEASURING THE VALUE OF +/(%c) OF
THE WALL

The first prerequisite for the application of the
equations derived in the preceding section, is
reliable knowledge of the product of thermal
conductivity, density and specific heat of the
wall material, which appears in them. These
properties can, of course, be either estimated on
the basis of data reported in literature [4], or
determined through the measurement of samples
of the wall material. The first alternative might
lead to considerable errors, the second is both
laborious and incapable of expressing the effect
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Table 1. Values of functions R(jvt) and S(jvt)

‘ R(jvt)

RGW

ot sGy | m S(jvt)
- - o ‘ IR

0 100 0 |52 3-89 —127

02 095 0-40 !l 54 412 -049

04 0-79 077 “1 56 4:19 0-35

0-6 0-54 1-09 5-8 410 1-18

0-8 021 1-34 60 3-82 2:03

1-0 -019 1-50 : 62 339 2-78

1-2 —062 1-56 i 64 2-80 3-46

14 -1-07 1-51 66 2:07 399

1-6 —1-51 1-34 6-8 1-24 4-39

1-8 —-1:92 1-08 70 0-34 4-61

20 —2-26 0-70 72 —0-61 4-65

22 —2-52 0-25 7-4 —1-56 4-48

24 —2-67 —-0-27 76 —2:47 4-13

2:6 —-2-71 —-0-84 7-8 —3-30 3-65

2-8 —~2:62 —1-41 80 -401 291

30 —2-40 -1-97 82 —4-58 2-08

32 —2:06 —2:49 84 —498 1-18

34 —1-60 —294 86 —-519 0-15

36 —1-04 -330 88 —518 ~0-90

3-8 —040 —3-53 9-0 —4:97 -194

4-0 0-29 —3-64 | 9-2 —4:55 —291

42 1-01 —3-60 ‘f 9-4 —3-93 —-378

44 1-72 —3-42 9-6 —-314 —4-55

4-6 2-40 —-307 : 9-8 -221 —512

4-8 3-00 —2-58 f 10-0 —-1-17 —5-56

50 3-51 —1-98

[
of local inhomogeneities. These are the reasons .
. 4E 7
for suggesting [2] the unsteady method of _ .
measurement in order to determine directly the . A s
value of 4/(Apc); it involves the construction on o ‘ ‘R | R,
the wall of a thin-film resistance thermometer s 0 R
with approximately constant, ele¢trically induced £, <« £7¢ ’ CRe e
heat flow to the wall. The value of 4/(Apc) can L : R, P R,
then be determined from the time variation of IR 2 .« e b b !
the surface temperature rise. So long as a R g R !
s "' L \

resistance film can be produced on the wall, the
method is advantageous inasmuch as it can also
be applied in cases where the samples of the wall
material are not available. The accuracy of the
method has, however, been quite low so far:
on the basis of data published in [1] and [2] one
can estimate the limit error of 4/(Apc)as +6-8%.
The accuracy of the method can be enhanced by
detailed elaboration.

Figure 2 gives the schematic diagram of the
measuring equipment as reported by Henshall
and Schultz [2]. The thin-film thermometer
R is connected in a bridge first energized through

FiG. 2. Bridge for measuring values of 8.
R2 = 36Q; Ra =160Q; Ry = 47 Q;
Rs =30Q; Re=43Q; R; = 68Q.

switch 1 from a low-voltage battery and indicated
by a galvanometer. The bridge is balanced with
potentiometer R7, connected through switch 1
to an oscilloscope and through switch 2 to
higher d.c. condenser voltage E. The oscilloscope
screen displays the time variation of potential
difference AE between the measuring nodal
points of the bridge in time .
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An analysis of the electric conditions of the
bridge will be made on the assumption of no
current passing through the indicating instru-
ment and negligible resistances of the ther-
mometer leads. Writing

K =
(1+§6)+(1—e)(1+e§—7)
8 (3D
R, (R, B R
e+R+ R7+ — € +R3+€R3
Ry =~ R Ry
Kls—K11(1+R+€R3)—ER3 (32)

where e is the relative setting of potentiometer Ry,
we obtain (Fig. 2)

i = Ky his = Kisi (33)
and also
_E (R R
i= Rg(R +R + Kn + K15R) 34
E Rg
= Ok, (Ku + Kis o ) (3%
R RiR
sE= g (Kup — Kule)) GO
where
Ri R Ri R
Q=T+ 5+ (1 +R_z+§é)

R
(Ku + sz}‘é)- (37)

For a balanced bridge R = Ry, AE = 0, and
equation (34) results in
K = Kis X (38)

Introducing relations (31), (32) to equation (38),
we obtain

R3 + R5 (Rs + Ry R5 »-hRs o
R, DRy R; DR; )‘ ¢
= 5 39
where
RoRs

D=1-"228

RaRq (40)
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whence follows the value of e for the given Rq.
Since ¢ can vary only within the interval of
(0; 1), we also obtain from equations (39) and
(40) the limits of values of Ry which can be
balanced by the bridge:

Rs\ R
R()ma.x = (1 + R5) 6R4a
3

Re/R
ROmin =1+ 6/ >

—- R
I+ (Re/Rs) "
Over the relatively narrow temperature interval
in which the resistance film is heated by electric
pulse during the measurement, the film resist-
ance may be expressed by relation

R=Ro(l + al) (42)

where o is the temperature coefficient of resist-
ance, Rq the resistance of the film at temperature
of the bridge balance, and T the respective
temperature rise.

Equations (36), (38) and (42) result in

@én

(43)

The heat output produced in the film during
the condenser discharge, is given by equation

Q= iR (44)
Letting
Ro R
lo = [Q i (Ku + K5 Rs)] (45)
Re Ry Rg
{= OoRs (I + KHR + Klskg) (46)

where 29 denotes the value of 2 for R = Ry, we
obtain

01t T @7)
If the resistance of the film remained unvaried
(R = Ro) during its heating, the corresponding
heat output would assume the value of Q.
Since aT <« 1, the relative change of output due
to the heating of the film follows with sufficient
accuracy from equation (47) in the form

8Q_Q Qo

= (1 - 20aT, (48)
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The effect of the change in film resistance on
heat flow can to a considerable extent be com-
pensated by the choice of ¢. If it is required that
80 = s, we obtain from equations (37), (46) and
(48) the following condition

Ro— Ry _ K11 + Kis (Re/Rs)
Rs I + K11 (Rs/Rg) + Kis (Re/R2)”
49)

Evidently, §Q = -e can be attained at the given
resistances of the bridge for a single value of Ry
only.

The heat output produced in the film, changes
moreover because of a drop in voltage E during
the condenser discharge. The condenser dis-
charge is described by

idt = — CdE. (50)
Writing
Rot = Rof2
(R4/Rs) + (Ro/Rs) + K11 + (Kis (Rs/Rs)
15

we get from equations (34) and (51) approxi-
mately

E

P=—=

Ro1”
For the boundary condition of £ = Ej and for
r = 6, the solution of equations (50) and (52)
takes the form of
WE__
Ey  CRa’
Bearing in mind that the allowable drop in
condenser voltage is very small in the course of
the measurement, we can express with sufficient
accuracy the relative change of voltage as

Eo—FE 1
Eo ¥ CRyi’

(52)

(53)

8E = (54)
Essentially, heat from the resistance layer is
transferred only by conduction to the wall and
conduction to the ambient air. Natural convec-
tion cannot develop during the short times
(t < 1 ms) of measurement, and the effect of
radiation is negligible for the usual experimental
arrangement [10]. Since the changes of heat out-
put produced in the film can be made very small,
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the case under discussion can in the first approxi-
mation be considered that of heat conduction
by two neighbouring half-spaces with a constant
heat flow in the interface. However, the tempera-
ture rise can sometimes be so large that the
dependence of thermal conductivity of the half-
space on temperature must be taken into con-
sideration. A solution of such a case was
presented by Hartunian and Varvig [3]. Accord-
ing to these authors, the relation for the interface
can be written as

Aot
e 2 e
s=2, /(%) (55)
where ¢ is the heat flow to the half-space,
é = fAdT (56)
-

and subscript - refers to the thermophysical
properties of the half-space at the temperature
prior to the condenser discharge. Hartunian and
Varvig [3] selected a logarithmic function for the
purpose of expressing the dependence of A(T).
But a linear function

A= 2o(l +9T) (57

satisfies the temperature intervals that come into
consideration, just as well.

The values of coefficient y of some of the
relevant substances are listed in Table 2.

Table 2. Values of 1000y [1/degC) for temperature
of 300°K according to data published in references

3and 11
- Reference 3 Reference 11
A XY
Glass 2-28 1-56
Quartz 2-40
Pyrex 5:50 1-24

From equations (55)—(57) we obtain

T(157) = Jor o Gora)

Actually, however, the heat flow from the
resistance film to the wall is not one-dimensional
as assumed by equation (55), because of finite
dimensions of the film: hence heat flows not
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only in the direction normal, but also parallel,
to the surface.

Exact solution of cases similar to the one just
mentioned, is very difficult, as pointed out, for
example, by Bailey [12]; but the effect of trans-
verse heat flow cannot be left out of our con-
siderations without closer analysis, Since the
transverse heat output is smaller in order of
magnitude than the output flowing in the direc-
tion of the normal, we shall be satisfied with the
following approximate solution: Express the
heat conducted to the wall by equation

Qs = pqF (59

where F is the geometric area of the resistance

film, ¢ the heat flow corresponding to the one-

dimensional case, and u the correction factor.
Heat Qs is given by relation

Qs = Qs + Oy

where, referring to Fig. 3,
Oz =gF

(60)

(61

RS
I SR
| T X
qvq c,_—_;‘-:—::q"dx
i t Pt
bog !

Fic. 3. Heat flows in wall.

The heat flow in the x-direction is given approxi-
mately {8] as

62
0= 4oy e (O
assume that the heat flows in the direction of
x and y (p being the cylindrical co-ordinate) are
equal at a given distance from the surface, i.e.

9y X ga. (63)
Such an assumption appears reasonable because
the dimensions of the wall through which heat is
conducted (thin-film thermometer) are of the
same order of magnitude in the x-and y-direction.
Heat conducted in the y-direction can be
expressed as

0y =U 3: gy dx (64)
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where U is the circumference of the resistance
film, and equations (59)-(64) result in

23 poco)

The total heat removed from the resistance film
is given by relation

Q=0s+ Qv (66)

where (, is the heat conducted to the ambient
air. Since at the interface, the temperature rise
of the air is identical with that of the wall,
Qv € Qs and the values of y are of the same
order of magnitude for air and wall, according
to Table 2, we may, in view of equations (58),
(59) and (66), write with sufficient accuracy that

o-afie J]) @

Subscript v refers to the thermophysical pro-
perties of air.
Writing furthermore

Roz = R (R2 %
02 = R01Ro] Kui[Ki1+ Kis(Re/Rs)?

(65)

(68)

a=l+[§+(3§~l)a]T

+ ] v 2 L] @
B = 4/(Aopoco) (70)

and assuming that the condenser voltage
changes but little (E =~ Ep) during the measure-
ment, the following expression is obtained with
sufficient accuracy from equations (43), (45)-(47),
(58}, (59), (65) and (67)«70):

2\t E} o
= V/mAE Rge oF an
Letting finally
Ry

72
b=p ko (1)

R R
=g (Ri + Kn + szk':) (73)

we can also ascertain the temperature rise T in
time ¢ following the beginning of the condenser
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discharge because equations (42), (43), (72) and
(73) give

F0E L
T aEp 1 — (AE/Eo) {2

Time ¢ in which the measurements are taken, is
but a fraction of the time necessary for complete
discharge of the condenser. The total temperature
rise Ty of the film is therefore substantially
larger than temperature rise 7 during the experi-
ment, The value of T, must not exceed a definite
limit in order not to damage the film. Exact
calculation of T, is very complex because the
voltage and hence also the heat produced in the
film, undergo strong changes during the con-
denser discharge. An approximate calculation
is carried out by considering constant production
of heat Qo in the film taking place only for such a
time 4 that the energy is the same as the actual
one, iLe.

4

1 ©
tm'—'—"Q—(‘}J'dit.
-

In view of equation (47), we may approximately
put

(73)

0= 0o (;g )2 (76)

it then follows from relations (53), (54), (75)
and (76) that

CRo1 t
fm - ,4?2““ A —

= 28E an
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Since according to equations (71) and (74) it
approximately holds that

% )

we get from expressions (74), (77) and (78) that
r AE 4

(78)

Tn = J35E) = Ey avi2sEy

The resistances of the bridge shown in Fig. 2
were determined so as to enable us to balance
the basic resistance of the thin-film thermometer
within the limits of Rg¢ = 55 to 80 Q [relations
(41)], to meet condition (49) for Ro > 67-5Q,
anc to use resistances of a standard series. The
resultant resistances are given in Fig. 2, the
characteristic functions of the bridge ascertained
for these values, in Table 3. The main advantage
lies in that the basic resistance Ry of the ther-
mometer matters very little.

As an analysis and the results of experiments
indicate, it is convenient to choose 7 = 500 us,
AE = 50 mV, 8E = 0-0025[10]. The correspond-
ing values of Ep and Ty, at Ry = 67-5Q, 0 =1
are shown in Table 4 for limit values of «, 3, F.
It is evident that the necessary condenser volt-
ages are readily attainable, and the maximum
temperature rise of the film is quite acceptable.

According to relation (54), the condenser
should have for the given values a capacity
C =~ 3000 wF which can economically be realized
only through the use of electrolytic condensers.
But such condensers have a relatively low
bleeder resistance and it is, therefore, necessary

Table 3. Characteristic functions of the bridge shown in Fig. 2

Rm(g_)_.‘ P .

Ro($2)

55 61-2 10 880
575 61-8 10 600
60 622 10410
62:5 625 10270
65 62-8 10 240
67:5 630 10 220
70 630 10 310
72-5 63-1 10450
75 630 10630
775 63-0 10 840
80 629 11090

& {2 s
977 4-50 0-46
9-70 4-57 0-47
9-66 465 048
9-63 473 0-49
9-64 4-83 0-50
9-65 4-92 0-51
9-70 504 0-52
977 5-16 0-53
9-85 529 0-54
9-94 5-42 055

10-00 5-56 0-56
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Table 4. Necessary condenser voltage and maximum
temperature rise of film

F a.103

I

Ep
(mm2) (1/degC) (kg/s32degC) (V) (degO)
0-7 700 35 282
1500 44 219
2
3 700 21 110
1500 27 83
0-7 700 94 104
1500 121 80
40
3 700 58 39
1500 75 30

to accomplish the switching of the condenser
from the source to the bridge in a short time,
A tilting mercury switch that effects the operation
in 10-40 ms, with the condenser voltage falling
less than 0-19, has been found very useful in
this respect. The accuracy of measurement is
substantially enhanced because under such cir-
cumstances the voltage of the source can be
taken as Ej.

The transient phenomena that arise immedi-
ately following the switching-on of the condenser,
in particular the charging of the lead capacities,
are the reason why the origin for the reading of
the potential difference AE is usually not known
exactly. The equations of the displayed oscillo-
scope traces is in the form

AE = mp(y + n)

t = mx

(80)
@D

where x, y are the oscillogram co-ordinates,
mg, mg are the respective scales, and 7 is the
unknown shift of the origin. Writing

_obv+m
Z = v (82)
we obtain from equations (71), (80)-(82)
2 3
_ ﬁ/ln_‘ E 0 1 (83)

The quantity Z, a constant for each experiment,
is best established as follows: For a series of
selected values of x; find the corresponding y;
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by measuring the oscilloscope trace. In the
vicinity of the origin, choose a value of x; at
point where the corresponding y: can be ascer-
tained with reliability. For the remaining pairs
of x4, y; the desired Z; follows from equation (82)
in the form

_ Ji =N
— [WGdled] = [V(x1)]on]

where the magnitudes of o and o; are given by
equations (69) and (81), respectively. Because of
errors in measurement, the various values of Z;
differ somewhat one from another; the most
probable value is given by equation

Z (84)

n+1
51
n
i=2
where 7 is the number of values of Z;. When the
oscilloscope trace is measured with a profile
projector, the limit relative error of Z is usually
%z < 001 for »n > 8 [10]. The limit relative
errors of the remaining quantities appearing in
equation (83) can be estimated with reserve as
follows: %m, = 0-02; %my = 0-01; xg, = 0-005;
%y = 0-01; %p = 0-01; %gy, = 0-01. The limit
relative error of 8 is then obtained from relation

Z; (85)

My = J, + Ty + ORL, + 2 + R
+ %rgy + %2, (86)
whence follows

%y = 0-03.

Fi16. 4. Thin-film resistance thermometer.
1, sleeve; 2, glass plate; 3, platinum leads; 4, sealing
ring; 5, h.f. cable; 6, shield; 7, nickel film; 8, ceramic
bicapillary.
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Table 5. Results of check measurement of B
F U a-103 B* B B

Pickup (mm?2) (mm) (1/degC) (kg/s3/2 degC) 38 881

No. 21 159 73-5 2-325 1113 1118 1191 0-004 0-065

No. 23 316 68-2 1-965 1113 1143 1167 0-026 0-046
The same error can also be expected in the case #05 ———= e
where B is being determined from the measure- - otlt _)
ments of Ao, po and co. Z . n ot

Tests intended to verify our conclusions Z x

arrived at in the foregoing discussion, were
carried out on glass. Samples of the glass were
measured for thermal conductivity, density and
specific heat using the steady-state methods. As
the measurements indicate, the samples are at
20°C characterized (within the limits of error
stated above) by a value of B* = 1113 kg/s52
degC. Pickups (Fig. 4) prepared from the
measured samples were vacuum coated with a
resistance film of nickel. Pickups Nos. 21 and
23 whose characteristic values, established by
measurement, are listed in Table 5, were used
in subsequent tests.

A series of experiments conducted at 20°C,
was undertaken with these pickups using the
method described above. The mean values of 8
obtained in these experiments are listed in Table
5 together with deviations

_B-p
g

The deviations lie within the limits of estimated
error of measurement; this means that all the
effects that might have come into play, have been
accounted for by the method. The results of
measurement have enabled us to judge whether
or not we have been justified in introducing the
correction ¢ dependent on time. If such a cor-
rection factor is justified, the values of Z;
established for o(¢) from the various points of
the oscilloscope trace, should appear as un-
systematic deviations whereas the deviations
of Z; determined for ¢ = const. (e.g. ¢ = 1)
should be systematic. Figure 5 in which the
results of one of the experiments are plotted,
gives evidence that it was so, The dependence of

o8 @87

1 F-_A#,;LJA' ]

0 95 L i L L

FiG. 5. Deviations of values of Z;.

o(?) is mostly due to the last term on the right-
hand side of equation (69). Neglecting this term
would result in values p1 with the corresponding
deviations 881 given by equation (87). These
values are listed in Table S, and it is clear that
deviations 8B exceed both the deviations 88
and the estimated error of measurement x,. The
last term on the right-hand side of equation (69)
expresses the effect of heat flow parallel to the
wall surface; as our exposition has indicated,
this effect must be taken into consideration if
we wish to enhance the accuracy of the method.

MEASURING THE TEMPERATURE RISE OF THE
WALL SURFACE

Another prerequisite for the application of
equations (10) and (29) is a measurement of the
time variation of temperature rise of the wall
surface that would enable us to determine the
coefficients in relations (3) and (13) with sufficient
accuracy. Thin-film resistance thermometers are
conveniently used for this purpose in conjunction
with the bridge illustrated in Fig. 6. Prior to the
beginning of the process being studied, the
bridge is balanced with potentiometers R4, Rs
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FiG. 6. Bridge for measuring temperature differences.
Ri1 = R: =400Q; R3 = 47 Q;
Ry =100 Q; Rs = 10 Q.

and connected through switch 1 to an oscillo-
scope which displays the variation of potential
difference AE between the nodal points in time ¢.
This bridge is simpler than the one schematically
shown in Fig. 2 because of less stringent demands
made on its function (it is, for example, not
necessary to compensate for the change in heat
flow).

An analysis of the electric conditions of the
bridge (Fig. 6) indicates that

, E
2= RY¥R. (88)
AE = f TR = RaRs (89)

(R + Ry)(R1 + Ro)

where R is the resistance of the thin-film ther-
mometer, E the voltage of the source, and R; the
resultant value of resistances Rs, Ry, Rs.

It holds for a bridge balanced prior to the
measurement that

R: R,

R = Ry; R R (90)
hence equations (42), (89) and (90) give
AE 1 R
polAE LRy
1+ Ry ~ D)

An advantage of this procedure lies in that the
measurement of the temperature rise is inde-
pendent of the basic resistance Rg of the ther-
mometer. Equation (91) enables us to determine
the ratio of Ri/Rz so as to yield the maximum
AFE for the given values of o, E, T. The ratio

R
R, = V(L +el) 92)
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and since oT is always small compared with
unity, the highest sensitivity is attained with
resistances R; and Ry approximately equal
(Fig. 6).

The choice of voltage E is another question.
The higher the voltage, the more sensitive the
bridge but the higher the temperature rise of the
film due to Joule’s heat. Since such a temperature
rise might constitute a source of error, there
must exist an optimum voltage at which the
accuracy of measurement will be highest. The
effect of Joule’s heat can be expressed with
sufficient accuracy as

R()I'é‘a jad /IFT() (93)

where A is the heat-transfer coefficient and T
the respective temperature rise of the film. The
latter is obtained approximately from equations
(88), (90), (92) and (93) in the form

E2
4RoAF
To compute the errors, equations (91) and (92)
serve to express the approximate value of the
measured temperature rise
4AE
o E

To =

(94)

T

e

(95)

The values of AE are established by evaluating
the respective oscillograms and since there are
no initial transient phenomena present, we may
put n =6 in equation (80). Estimating the
absolute error brought about by Joule’s heat,
with the aid of the relation

xTy = l,llTo (96)

we may write the relative error of the measured
temperature rise 7 on the basis of equations
(80) and (94)-(96) in the form

R i

2 YE2 |2
"ﬂ) + (4“R0F’/TT) ©7)
where xy is the absolute error of measurement
of co-ordinates y on the oscilloscope trace.

Voltage E at which error %7 will be a minimum,
follows from equation (97) in the form
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3 [/4/2
E = 2 /\/( a¢'ﬂIEMyROFA).

To evaluate relations (97) and (98), it is first
necessary to establish the value of A. The
pertinent measurements were made on pickups
designed in accordance with Fig. 4 built in the
steel wall of a shock tube with their resistance
film in the vertical plane. During the measure-
ments, the air in the shock tube was kept at
atmospheric pressure and 20°C, and the depend-
ence of film resistance on heating current iy
measured. According to the results, A is virtually
independent of 7, and attains a value of
A ~ 1000 W/m? deg C. A scatter of up to +209%;
exhibited by the various pickups, is due to the
different clearances with which the pickups were
built in the wall. The share of natural convection
in the value of A was indicated as about 19/;
hence neither the position of the resistance film
nor the pressure in the measuring space will
exert perceptible effect on the value of A.

For the purpose of computation, we have
estimated %, = 0-01, ¥p, = 0-0l, zz = 0-005,
%y = 3 X 10-4m, = 0-1, takena = 2:7 x 1073
1/°C, mg =01 V/m, A= 1000 W/m2 deg
C and assumed Ry = 65 Qin equation (97). The
results are presented in Figs. 7 and 8. It is clear
that a temperature rise T 3 degC >z can be
measured with a limit relative error of about 2%,
and that larger areas of the films are more
convenient, F > 10 mm? being already satis-
factory for the purpose.

(98)

25 - ,
£ ‘

2
v

ol i ,
1 3 10 30
F mm?
FiG. 7. Suitable energizing voltage of bridge from
Fig. 6.
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F o mm?

FiG. 8. Error of measurement of temperature differences
effected with thin-film thermometer and bridge from
Fig. 6.

CONCLUSION

Taking into consideration relations (3) and
(13), we are in a position to state that the relative
errors of expressions in the braces of equations
(10) and (29) are of the same order of magnitude
as the relative errors of the measured temperature
rise of the surface. The limit relative error of heat
flow ¢ determined through the use of the method
discussed in the paper, can be expressed in the

form
n2 = xq + X + }uf. (99)
Since the error burdening the measurement of
time ¢ is preponderantly given by the error of
scale m¢ (%: = %m,), and the temperature rise
usually studied in the measurement of unsteady
heat flows, exceeds 3 degC, we can—in view of
the preceding explanation—estimate with quali-
fications the limit relative errors as follows:
%p = 002, %, = 003, % = 0-02. Equation (99)
then gives %, = 0-04. Since Hall and Hertzberg
{1] estimate the error of measurement of unsteady
heat flows with thin-film resistance thermometers
as +51to0 159%, it can be stated that the elabora-
tion of the method has resulted in increased
accuracy. Moreover, equations (10) and (29)
enable us to carry out the determination of the
heat flow from the data of thin-film thermometers
in a substantially simpler way in many instances,
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Résumé—Dans cet article, les équations pour le calcul du flux de chaleur instationnaire & une paroi
sont obtenues dans le cas oui la variation dans le temps de la température a la surface de la paroi peut
s’exprimer par une puissance ou une série trigonométrique. Pour utiliser ces équations, il est d’abord
nécessaire de connaitre d’une fagon sire la racine carrée du produit de la conductivité thermique, de la
densité et de la chaleur spécifique du matériau de la paroi, désignée par B, et de mesurer la variation
de "augmentation de la température de surface avec suffisamment de précision.

Les deux opérations peuvent étre accomplies en employant des thermométres a résistance 3 ilm
mince consistant en une mince couche métallique déposée sur une paroi isolante électriquement.
L’article expose d’une fagon détaillée la méthode instationnaire de la mesure de B qui facilite la déter-
mination de cette valeur avec une erreur d’environ 3 %. Une méthode de mesurede’augmentationdela
température de surface dépassant 3 degC avec une erreur d’environ 2% est également décrite. La
meéthode exposée dans I'article permet de déterminer le flux de chaleur instationnaire a la paroi avec

une erreur d’a peu prés 4 9.

Zusammenfassung--Zur Berechnung des instationiiren Wirmestromes an eine Wand werden Gleichun-

gen fiir die Fille agegeben in denen die zeitliche Anderung der Oberflichentemperatur der Wand
als Potenzreihe oder trigonometrische Reihe ausgedriickt werden kann. Zum Gerbrauch dieser
Gleichungen ist es notwendig zuverlissig die Quadratwurze! aus dem Produkt von Wirmeleitvermogen
Dichte und spezifischer Wirme des Wandmaterials, als 8 bezeichnet, zu bestimmen und die zeitliche
Anderung der Oberflichentemperaturerhthung genugend genau zu messen. Beide Aufgaben kdnnen
mit einem Diinnfilmwiderstandsthermometer das aus einem diinnen metallischen Belag auf einer
elektrisch isolierenden Wand besteht geldst werden.

Es wird eine genaue Ausarbeitung der instationdren Methode der f-Messung gegeben ; sie ermoglicht
die Bestimmung dieses Wertes mit einem Fehler von etwa 3 9. Eine Methode zur Messung der
Temperaturerhdhung der Oberflidche bei mehr als 3 grd und einem Fehler von etwa 2 %, wird ebenfalls
beschrieben. Das in der Arbeit diskutierte Verfahren erlaubt die Bestimmung des instationiiren Wirme-

stromes an eine Wand mit einem Fehler von etwa 4 %.

Ansoranusi—B cTaTee BHIBOAATCH YPABHEHUA JIA PACYETa HECTANMOHAPHOIO TEHIOBOIC
MOTOKA HA CTEHKS A CIIY4aeB, KOTJA TeMITepaTy PHEIE USMEHEHHUA B0 BPeMEHH Ha OBePXHOCTH
CTEHKHM MOMHO ONMCTab C TOMOINBIO CTENEHHOI'0 HIM TPUIOHOMeTpUYecKOro paAga. Ias
HCIIOJBb30BAHNUA HTUX ypaBHEHUE HeOUXONUMO YCTRHOBUTb HAJEHKHOCTH 3HAUCHUS KBAZpa-
THOTO KODHA IPOW3BEJEHNA TEIVIOHPOBOJHOCTH, IJIOTHOCTH M YHAETbHON TeIITOeMKOCTH
MaTepUAJA CTEHKM, 0603HATAEMOT0 Yepes B, a TamMe ¢ XOCTATOUHOM TOYHOCTHIO M3MEPHTH
H3MEHEHMS BO BPEMEHH TeMIIEPATyPH HR HOBEPXHOCTH CTEHKH. DTOTO MOMHO JNOCTHYE,
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UCHOJb3YA MJIEHOYHLIE TEPMOMETPEL COLIPOTUBJIEHNA, COCTOAINE U3 TOHKOI'O MeTAINYECKOro
CJI0A, HAHECEHHOT0 Ha TIOBEPXHOCTb CTEHKU U3 AMBJIEKTPHKA. B cTaThe AeTalbHO MBJIAraeTcs
HeCTAIMOHAPHEI! MeTOJl U3MepeHNs B, KOTOPHLH faeT BOBMOKHOCTD ONPEAEIUTh 3Ty BeJANIMHY
¢ TOYHOCTBIO [0 3%. Ommcad TakMe METOJ UBMepeHHA YBeJNUYeHMs TEMIEPATYDH HA II0-
BePXHOCTH, NpeBHIIawIero 3°¢c TouHOCThIO OKOJO 29,. M3nomeHHadA B craTbe MeTOJAMKA
HOBBOJIAET OLPENIeUTh HEeCTAUMOHAPHBI TEIIOBOI MOTOK HA CTeHKe ¢ ommGKol oxomo 49.



